[Udemy] [Helen Kapatsa] Ускоренный курс PyTorch

vitriol0674

Команда форума
Разула в сердце
Живёт по соседству
Особенный
Спасибо от Разулы
Регистрация
13 Янв 2018
Сообщения
44.236
Реакции
732.129
Ra
140.928

[UDEMY] [HELEN KAPATSA] УСКОРЕННЫЙ КУРС PYTORCH

59093ff468 [Udemy] [Helen Kapatsa] Ускоренный курс PyTorch


В этом уроке мы узнаем, как работать с PyTorch. Это одна из самых популярных сред машинного и глубокого обучения. С ним действительно интересно работать и разрабатывать крутые приложения. Итак, я надеюсь, что вы посмотрите это введение и узнаете все о необходимых основах для этого фреймворка.

Здесь Вы познакомитесь со следующими концепциями:

  • Установка, проверка фреймворка.
  • Тензоры и базовые операции с ними (сложение, вычитание, умножение, деление). В этом видео мы узнаем, как работать с тензорами, как создавать их и осуществлять некоторые базовые операции. Мы также узнаем, как преобразовать массивы NumPy в тензоры PyTorch и наоборот.
  • Вычисление градиента с помощью Autograd и его оптимизация. Сегодня мы узнаем о пакете Autograd в PyTorch и о том, как с его помощью вычислять градиенты. Вы наверняка помните, что в моделях кластеризации, логистической и линейной регрессиях можно уточнять границы кластеров, формы кривых и положение прямой. Градиент может делать все это, оптимизируя модели.
  • Обратное распространение ошибки. В этом видео я постараюсь объяснить знаменитый алгоритм Backpropagation.
  • Градиентный спуск с Autograd. В этом уроке я покажу вам конкретный пример оптимизации модели с автоматическим вычислением градиента Autograd. Мы начнем с реализации алгоритма линейной регрессии, где каждый шаг выполним вручную. Создадим прогнозирующее уравнение и функцию потерь. Затем выполним вычисление градиентов и реализуем алгоритм градиентного спуска для оптимизации наших параметров. Когда завершим эти вычисления, то увидим, как можем заменить вычисленные вручную градиенты.
  • Пайплайн: автоматизация обучения и оптимизации модели. Заменим вычисленные вручную потери и обновления параметров, используя соответствующие классы PyTorch. Мы также заменим прогнозирование модели вручную, после чего библиотека сможет выполнить за нас весь пайплайн – набор действий, включающий построение модели и ее оптимизацию.
  • Пакетное обучение: классы Dataset и DataLoader, встроенные датасеты, подгрузка данных из файлов, раскладывание эпох обучения на партии (batches).
Курс вдохновлен материалами Патрика Лебера и продолжит пополняться вплоть до конца 2021 г.

Технологии: PyTorch (backward, Dataset, DataLoader, math, nn, optim, utils), NumPy, TensorBoard.

Скачать:
 

Похожие темы

Теги по которым нашли тему

  1. Numpy
  2. Helen Kapatsa
Сверху